# REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

AD-A244 280

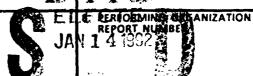
nation is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, impleting and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 32, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503

2. REPORT DATE 11/15/91 3. REPORT TYPE AND DATES COVERED

Final Report 09/28/87-09/1/91

Interdisciplinary Study in Physical Mathematics

5. FUNDING NUMBERS


DAAL03-87-K-0110

6. AUTHOR(S)

M. Howard Lee

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Department of Physics & Astronomy University of Georgia Athens, GA 30602



9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U. S. Army Research Office

P. O. Box 12211

Research Triangle Park, NC 27709-2211

10. SPONSORING / MONITORING AGENCY REPORT NUMBER

ARO 24/66.38-MA

11. SUPPLEMENTARY NOTES

The view, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

A study of nonlinear differential and integral equations which describe time-dependent phenomena in fluids and solids has been conducted by a team of investigators at the University of Georgia. methods of study employed include computer simulations, recurrence relations, linearization. Among significant findings are a demonstration of slow decay in a Hermitian many-body system for the first time. The origin & mechanisms of slow decay have been The study has resulted in nearly 30 articles, most of elucidated. which are in refereed journals of international standing.

92-00841

| 4. | SU | BJE | CT | TER | MS |
|----|----|-----|----|-----|----|

Mathematical Physics

15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

18. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

SECURITY CLASSIFICATION OF ABSTRACT

20. LIMITATION OF ABSTRACT

UNCLASSIFIED

NSN 7540-01-280-5500

UNCLASSIFIED

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18.

III.

\*\)

1

₹

## FINAL REPORT

- 1. ARO PROPOSAL NUMBER: 24166-MA
- 2. PERIOD COVERED BY REPORT: 28 September 1987 1 September 1991
- 3. TITLE OF PROPOSAL: Interdisciplinary Study of Physical Mathematics
- 4. CONTRACT OR GRANT NUMBER: DAAL03-87-K-0110
- 5. NAME OF INSTITUTION: University of Georgia
- 6. AUTHORS OF REPORT: M. Howard Lee
- 7. STATEMENT OF THE PROBLEM

A study of nonlinear partial differential and integral—differential equations which describe time—dependent phenomena in fluids and solids was undertaken by an interdisciplinary team of investigators at the University of Georgia. Emphasis was placed on approximations of water wave equations and related nonlinear optics, dynamical lattice equations, and nonlinear Langevin equation. The methods of study employed were principally computer simulations, recurrence relations, linearization, representation theory of infinite dimensional Lie algebras and group, and inverse scattering transformations.

#### 8. SUMMARY OF THE MOST IMPORTANT RESULTS

The efforts of our project team have resulted in nearly 30 publications, most of which have appeared in refereed journals of international standing. Because of the diversity in our output, it is difficult to judge as to which articles are more important than the others. Some articles represent certain stages of development, which later when completed may prove to be even more significant than as appeared earlier. Bearing this point in mind, we shall select a work of substantial nature which has been completed during the project period as our most important. By this criterion, the most important results of our project are represented by our publications 26 and 27.

The research findings given in these two publications concern slow decay in many—particle systems. Is there a memory in thermodynamic systems? Whether slow decay exists in an Hermitian system has been an open problem ever since numerical studies showed evidence some two decades ago. In these two articles, we have finally demonstrated rigorously that slow decay can exist under certain subtle conditions for the first time. Furthermore, the origin and mechanisms of slow decay have been elucidated. The underlying physical process in spin systems (i. e., models of magnetism) responsible for slow decay turns out to be spin precession. It suggests that mechanisms of slow decay in fluids are likely to be vorticity and vortex motion. The results stated here were obtained by solving the Heisenberg equation of motion (i. e., nonlinear Langevin equation) exactly and then by carrying out the required ensemble averages for an asymptotic time domain. Also interesting was the determination of the time domain which may be regarded as asymptotic.

1

500

Unaunounded

Availability

pation

Ava.

### 9. LIST OF PARTICIPATING SCIENTIFIC PERSONNEL

A. Co-Principal Investigators

M. H. Lee, R. L. Anderson, R. A. Kunze

- B. Other Investigators
  - D. P. Landau, M. Adams, R. Varley, T. R. Taha, J. Dorfmeister
- C. Students Receiving Advanced Degrees
  - S. Sen, Ph.D in 1989 (under the direction of Professor M. H. Lee)
    Title of Dissertation: Transverse Spin Dynamics of Ising Models in one, two and three dimensions.

#### 10. LIST OF PUBLICATIONS

1. Taha and M. J. Ablowitz
Analytical and numerical aspects of certain nonlinear evolution equations; IV. Numerical Modified KdV equation
J. Comp. Phys. 77, 540-548 (1988).

2. M. H. Lee

Method of recurrence relations and time evolution problems in statistical mechanics

Math/Chem/Comp 1988, Proc. of Int. Conf. on the Interface between Mathematics, Chemistry and Compute Science, Dubrovnik, Yugoslavia, 20—25 June 1988, Ed. A. Graovac, Elsevier (Amsterdam, the Netherlands).

- 3. M. H. Lee
  Propagation of electron beams in inhomogeneous media
  SPIE-Int. Soc. Opt. Eng. 874, 290-295 (1988).
- 4. M. R. Adams and J. Harnad A Generating Function Proof of the Commutativity of Certain Hamiltonian Isospectral Flows. Lett. Math. Phys. 16, 269-272 (1988).
- 5. M. H. Lee Note on certain integrals of Bessel functions J. Phys. A: Math. Gen. 21, 4341-4345 (1988).
- 6. J. Florencio and M. H. Lee
  Memory functions and relaxation functions of some spin systems
  Nucl. Phys. B, <u>5</u>A, 250-254 (1988).
- 7. M. H. Lee
  Frequency moment sum rules, recurrence relations and continued fractions in
  nonequilibrium statistical mechanics
  Computer Phys. Comm. <u>53</u>, 147-155 (1989).
- M. H. Lee and J. Hong
  Asymptotic behavior of a dynamic local field: Is the order of the k → ω and ω → ω limits interchangeable in an interacting many-body system?
  J. Phys. Condens. Matter 1, L3867-3872 (1989).

- 9. J. Hong, J. Park and M. H. Lee Dynamic local field, sum rules and dynamic structure factor of a classical plasma with a log. potential in two dimensions at  $\Gamma = 2$  Phys. Rev. B30, 1528-1537 (1989).
- 10. M. H. Lee, J. Florencio and J. Hong
  Dynamic equivalence of a two-dimensional quantum electron gas and a classical
  harmonic oscillator chain with an impurity mass.
  J. Phys. A Math. Gen. 22, L331-335 (1989).
- 11. M. H. Lee Chemical Potential of a D-Dimensional Free Fermion Gas at Finite Temperatures J. Math Phys. 30, 1837-1839 (1989).
- 12. M. B. Yu, J. H. Kim and M. H. Lee
  Time evolution and delocalization in models of harmonic oscillator chains with an impurity.
  J. Luminesc. 45, 144 (1990).
- 13. M. H. Lee & J. T. Nelson Frequency-dependent susceptibility of a free electron gas in D dimensions. J. Math. Phys. 31, 689 (1990).
- 14. M. H. Lee Fermionic Chemical Potential. J. Math. Chem. 5, 83 (1990).
- 15. D. Y. Kim, R. W. Gerling and D. P. Landau
  Spin dynamics study of the classical anisotropic XY chain.
  Phys. Rev. B 42, 631 (1990)
- 16. T. R. Taha
  A parallel algorithm for the IST scheme.
  Proc. 4th Conf. on Hypercubes, Concurrent Computers, and Applications Monterey, CA (1990), pp. 1223-26.
- 17. T. R. Taha
  A new IST numerical scheme for the nonlinear Schrödinger equation.
  Proc. First IMACS Int. Conf. on Comp. Phys., Boulder, 1990
  pp. 154-159.
- 18. R. W. Gerling and D. P. Landau
  Time dependent behavior of classical spin chains at infinite temperature.
  Phys. Rev. B 42, 8214 (1990).
- 19. T. R. Taha
  Numerical simulation of the nonlinear Schrödinger equation
  J. Math. and Comp. in Simulation 32, 309-312 (1990).
- 20. T. R. Taha
  A parallel algorithm in solving higher order KdV equations on a hypercube
  Proc. 5th Distributed Memory Computing Conf., ed. D. W. Walker & Q. F. Stout,
  Vol. 1, 564-567 (1990).

- 21. T. R. Taha
  Solution of periodic tridiagonal linear systems of equations on a hypercube
  Proc. 5th Distributed Memory Computing Conf., ed. D. W. Walker & Q. F. Stout,
  Vol. 1, 346-350 (1990).
- 22. M. R. Adams et al Dual Moment Maps in Loop Algebras Lett. Math. Phys. 20, 299 (1990).
- 23. M. R. Adams et al
  Finite dimensional integrable Hamiltonian systems in loop algebras
  Proc. Workshop on Integrable Hamiltonian Systems, ed. J. Harnad & J. E.
  Marsden, Les Publication CRM, Montreal, 1990.
- 24. M. R. Adams et al Liouville Generating Functions for Isospectral Flow in Loop Algebras. Integral & Superintegrable Systems, ed. B. Kuperschmidt, World Scientific, Singapore. 1990
- 25. M. R. Adams, R. Anderson & R. Varley
  Remarks on Integrable Hierarchies in Finite Dimensions
  Hamiltonian Systems, Transformation Groups & Spectral Transform
  Methods
  Ed. J. Harnad & J. E. Marsden, Les Publications CRM, Montreal, 1990.
- 26. R. Dekeyser & M. H. Lee
  Nonequilibrium statistical mechanics of the spin van der Waals
  Model:
  - I. Time evolution of a single spin Phys. Rev. B 43, 8123 (1991).
- 27. R. Dekeyser & M. H. Lee
  Nonequilibrium statistical mechanics of the spin van der Waals
  Model:
  - II. Autocorrelation function and long time tails Phys. Rev. B 43, 8131 (1991).